

DEVELOPING A RELIABLE QUALITY INDICATOR FOR DELIRIUM: MEANINGFULLY ASSESSING INCIDENCE WITHOUT PENALIZING GOOD SCREENING COMPLIANCE

Michela Venturini¹⁻⁴, Nayeli Schmutz Gelsomino, MD^{1,5}, Marius Möller, MScN⁶, Simone Pascale Wildhaber, MScN⁶, Martin Zozman, PhD⁷, Prof. Reto Stocker, MD^{6,8}, Benjamin T. Dodsworth, DPhil^{1*}

Swiss 335-bed hospital

12 months

surgical inpatients

non-cardiac

age 60+

PIPRA risk prediction + prevention

"Delirium" = DOS => 3

routine data

Observed delirium incidence (relative to

expected) and screening compliance over time

n= 4,670

Observed and expected delirium incidence and screening compliance over time

Expected incidence Screening compliance (average delirium risk) 0.12 -Apparent observed incidence

Normalise to expected incidence

110

Adjusted delirium incidence over time

Is the incidence really lower? Or is delirium not identified?

Option 1: Ignore the problem

Leads to celebration of bad practises: Screening compliance affects delirium diagnosis (p < 0.01). Lowest compliance → lowest observed incidence

Option 2: Ignore the low compliance patients

- Removal of 1,628 (35%) patients (with compliance < 0.33)
- Simple but somewhat arbitrary Because it's normalised to expected
- incidence, systematic bias from e.g. nurses screening predominantly high risk patients is removed

Option 3: Data science

- More complicated
- Less arbitrary
- Can deal with more complex relationships
- Takes into account likelihood of delirium also based on LoS

What would incidence be if compliance = 100%?

Step 2: Prediction

Compliance LoS Delirium Model Data PIPRA score Time Compliance = MAX Delirium Model

CONCLUSION: Best is to have high compliance, but second best is option 2 or 3